Titanium Dioxide Nanotube Arrays for Cardiovascular Stent Applications

ACS Omega. 2020 Mar 27;5(13):7280-7289. doi: 10.1021/acsomega.9b04118. eCollection 2020 Apr 7.

Abstract

Efficient stent implantation among others depends on avoiding the aggregation of platelets in the blood vessels and appropriate proliferation of endothelial cells and controlled proliferation of smooth muscle cells, which reduces the development of pathology, such as neointimal hyperplasia, thrombosis, and restenosis. The current article provides an elegant solution for prevention of platelet and smooth muscle cell adhesion and activation on stent surfaces while obtaining surface conditions to support the growth of human coronary artery endothelial cells. This was achieved by surface nanostructuring and chemical activation of the surface. Specific nanotopographies of titanium were obtained by electrochemical anodization, while appropriate chemical properties were attained by treatment of titanium oxide nanotubes by highly reactive oxygen plasma. Surface properties were studied by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Wettability was evaluated by measuring the water contact angle. The influence of nanostructured morphology and plasma modification on in vitro biological response with human coronary artery endothelia and smooth muscle cells as well as whole blood was studied. Our results show that a combination of nanostructuring and plasma modification of the surfaces is an effective way to achieve desired biological responses necessary for implantable materials such as stents.