Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination

PLoS Pathog. 2020 Apr 13;16(4):e1008446. doi: 10.1371/journal.ppat.1008446. eCollection 2020 Apr.

Abstract

Microfold (M) cell host-pathogen interaction studies would benefit from the visual analysis of dynamic cellular and microbial interplays. We adapted a human in vitro M cell model to physiological bacterial infections, expression of fluorescent localization reporters and long-term three-dimensional time-lapse microscopy. This approach allows following key steps of M cell infection dynamics at subcellular resolution, from the apical onset to basolateral epithelial dissemination. We focused on the intracellular pathogen Shigella flexneri, classically reported to transcytose through M cells to initiate bacillary dysentery in humans, while eliciting poorly protective immune responses. Our workflow was critical to reveal that S. flexneri develops a bimodal lifestyle within M cells leading to rapid transcytosis or delayed vacuolar rupture, followed by direct actin motility-based propagation to neighboring enterocytes. Moreover, we show that Listeria monocytogenes, another intracellular pathogen sharing a tropism for M cells, disseminates in a similar manner and evades M cell transcytosis completely. We established that actin-based M cell-to-enterocyte spread is the major dissemination pathway for both pathogens and avoids their exposure to basolateral compartments in our system. Our results challenge the notion that intracellular pathogens are readily transcytosed by M cells to inductive immune compartments in vivo, providing a potential mechanism for their ability to evade adaptive immunity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Caco-2 Cells
  • Dysentery, Bacillary / microbiology*
  • Enterocytes / microbiology*
  • Epithelial Cells / microbiology*
  • Humans
  • Listeria monocytogenes / genetics
  • Listeria monocytogenes / physiology*
  • Listeriosis / microbiology*
  • Shigella flexneri / genetics
  • Shigella flexneri / physiology*

Grants and funding

CR acknowledges a grant from Danone Research. YYC is supported through a postdoctoral fellowship from the Fondation pour la Recherche Médicale (FRM). JE acknowledges grant support from Institut Pasteur (GPF “MCellHTLV”), the European Union (ERC CoG “EndoSubvert”), and the ANR (Grants “StopBugEntry” and “AutoHostPath”). The DIHP unit is member of the IBEID and MI LabExes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.