Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation

Microorganisms. 2020 Apr 11;8(4):553. doi: 10.3390/microorganisms8040553.

Abstract

Since bacterial biofilm may contribute to the secondary contamination of food during the manufacturing/processing stage there is a need for new methods allowing its effective eradication. Application of food additives such as vitamin C already used in food industry as antioxidant food industry antioxidants may be a promising solution. The aim of this research was evaluation of the impact of vitamin C (ascorbic acid), in a range of concentrations 2.50 µg mL-1-25.0 mg mL-1, on biofilms of Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes strains isolated from food. The efficacy of ascorbic acid was assessed based on the reduction of optical density (λ = 595 nm). The greatest elimination of the biofilm was achieved at the concentration of vitamin C of 25.0 mg mL-1. The effect of the vitamin C on biofilm, however, was strain dependent. The concentration of 25.0 mg mL-1 reduced 93.4%, 74.9%, and 40.5% of E. coli, L. monocytogenes, and S. aureus number, respectively. For E. coli and S. aureus lower concentrations were ineffective. In turn, for L. monocytogenes the biofilm inhibition was observed even at the concentration of 0.25 mg mL-1. The addition of vitamin C may be helpful in the elimination of bacterial biofilms. Nonetheless, some concentrations can induce growth of the pathogens, posing risk for the consumers' health.

Keywords: Escherichia coli; Listeria monocytogenes; Staphylococcus aureus; ascorbic acid; biofilm; food; vitamin C.