Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus

mBio. 2020 Apr 14;11(2):e00112-20. doi: 10.1128/mBio.00112-20.


Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence.IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus.

Keywords: EcsAB; Eep; S. aureus; Staphylococcus aureus; linear peptides; lipoproteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / metabolism*
  • Gene Expression Regulation, Bacterial
  • Humans
  • Membrane Transport Proteins / metabolism*
  • Metalloproteases / metabolism*
  • Peptides / metabolism*
  • Staphylococcus aureus / enzymology*
  • Virulence


  • Bacterial Proteins
  • Membrane Transport Proteins
  • Peptides
  • Metalloproteases