The partnership between renalase and ejection fraction as a risk factor for increased cardiac remodeling biomarkers in chronic heart failure patients

Curr Med Res Opin. 2020 Jun;36(6):909-919. doi: 10.1080/03007995.2020.1756233. Epub 2020 Apr 29.

Abstract

Objective: Heart failure (HF) represents a huge socio-economic burden. It has been demonstrated, experimentally, that renalase, a newly discovered protein, prevents cardiac hypertrophy and adverse remodeling, which is seen in HF. We postulated the following aims: to investigate associations of renalase with biomarkers of cardiac remodeling: galectin-3, soluble suppression of tumorigenicity, (sST2), growth differentiation factor 15 (GDF-15) and syndecan-1, myocardial stretch (BNP) and cardio-renal axis (cystatin C) in HF patients with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) to determine whether renalase, in combination with left ventricular ejection fraction (LVEF), represents a risk factor for plasma elevation in biomarkers.Methods: We classified HF patients (n = 76) according to LVEF (preserved/reduced), applied a median plasma renalase (113 ng/mL) as a cut-off value (low/high) and created four subgroups of HF patients: HFpEF/low renalase (n = 19), HFrEF/low renalase (n = 19), HFrEF/high renalase (n = 32) and HFpEF/high renalase (n = 6). A control group (n = 35) consisted of healthy volunteers.Results: Plasma concentrations of evaluated biomarkers were determined using an ELISA technique and were highest in HF patients with reduced EF (p < .001, respectively), and renalase's positive correlations were obtained relating to all biomarkers: galectin-3 (r = 0.913; p < .001), sST2 (r = 0.965; p < .001), GDF-15 (r = 0.887; p < .001), syndecan-1 (r = 0.922; p < .001), BNP (r = 0.527; p < .001) and cystatin C (r = 0.844; p < .001) and strong and negative correlation with LVEF (r = -0.456, p < .001). Increased renalase, regardless of the EF (preserved/reduced), was shown to be an independent risk factor for an increase in all evaluated cardiac remodeling biomarkers, p < .001, respectively. However, increased renalase and reduced EF was the only independent risk factor for BNP and cystatin C elevation, p < .001, respectively. Results after multivariable adjustments (age/gender) were identical.Conclusion: When elevated plasma renalase and HF are present, regardless of EF being reduced or preserved, that represents a significant risk factor for increase in cardiac remodeling biomarker plasma concentrations. However, only elevated renalase and reduced EF demonstrated significance as a risk factor for BNP and cystatin C plasma elevation. Renalase may be considered a promising molecule for the improved predictive abilities of conventional biomarkers and is worthy of further investigation.

Keywords: BNP; EF; Renalase; cardiac remodeling biomarkers; heart failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Biomarkers / blood
  • Chronic Disease
  • Female
  • Growth Differentiation Factor 15 / blood
  • Heart Failure / enzymology
  • Heart Failure / physiopathology*
  • Humans
  • Male
  • Middle Aged
  • Monoamine Oxidase / blood*
  • Risk Factors
  • Stroke Volume / physiology*
  • Ventricular Function, Left
  • Ventricular Remodeling / physiology*

Substances

  • Biomarkers
  • GDF15 protein, human
  • Growth Differentiation Factor 15
  • Monoamine Oxidase
  • renalase