High Voltage Electrodes for Li-Ion Batteries and Efficient Water Electrolysis: An Oxymoron?

J Phys Chem Lett. 2020 May 21;11(10):3754-3760. doi: 10.1021/acs.jpclett.0c00778. Epub 2020 Apr 29.

Abstract

We demonstrate that key parameters for efficient electrocatalytic oxidation of water are the energetics of the redox complexes associated with their ionization and electrochemical potentials coupled to the change of metal-oxygen band hybridization. We investigate the catalytic activity of the LiCoPO4-LiCo2P3O10 tailored compound, which is a 5 V cathode material for Li-ion batteries. The reason for the weak catalytic activity of the lithiated compound toward the oxygen evolution reaction is a large energy difference between the electronic states involved in the electrochemical reaction. A highly active catalyst is obtained by tuning the relative energetic position of the electronic levels involved in the charge transfer reaction, which in turn are governed by the lithium content. A significant lowering of the overpotential from >550 mV to ∼370 mV at 10 mA cm-2 is achieved via a decrease of the ionization potential and shifting the electrochemical potential near the electronic states of the molecule, thereby facilitating water oxidation.