Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation

Trends Cell Biol. 2020 May;30(5):370-383. doi: 10.1016/j.tcb.2020.02.002. Epub 2020 Feb 20.

Abstract

Poly(ADP-ribose) (PAR) is a nucleic acid-like protein modification that can seed the formation of microscopically visible cellular compartments that lack enveloping membranes, recently termed biomolecular condensates. These PAR-mediated condensates are linked to cancer, viral infection, and neurodegeneration. Recent data have shown the therapeutic potential of modulating PAR conjugation (PARylation): PAR polymerase (PARP) inhibitors can modulate the formation and dynamics of these condensates as well as the trafficking of their components - many of which are key disease factors. However, the way in which PARylation facilitates these functions remains unclear, partly because of our lack of understanding of the fundamental parameters of intracellular PARylation, including the sites that are conjugated, PAR chain length and structure, and the physicochemical properties of the conjugates. This review first introduces the role of PARylation in regulating biomolecular condensates, followed by discussion of current knowledge gaps, potential solutions, and therapeutic applications.

Keywords: ADP-ribosylation; biomolecular condensate; liquid–liquid phase separation; poly(ADP-ribose); poly(ADP-ribose) polymerase; poly(ADP-ribose) polymerase inhibitor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Macromolecular Substances / metabolism*
  • Models, Biological
  • Phase Transition
  • Poly Adenosine Diphosphate Ribose / metabolism*

Substances

  • Macromolecular Substances
  • Poly Adenosine Diphosphate Ribose