A novel cellulose hydrogel coating with nanoscale Fe0 for Cr(VI) adsorption and reduction

Sci Total Environ. 2020 Jul 15:726:138625. doi: 10.1016/j.scitotenv.2020.138625. Epub 2020 Apr 13.

Abstract

A novel cellulose hydrogel coating nanoscale Fe0 (CH@nFe0) was synthesized and utilized to improve the dispersibility and oxidation resistance of nFe0. The composition and structure of CH@nFe0 were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) before and after its reaction with Cr(VI). The performance of CH@nFe0 in the removal of Cr(VI) was evaluated through a comparative experiment between nFe0 and CH. The influence of the initial concentration of Cr(VI), temperature, dosage, and the initial pH of the solution were also evaluated in this reaction system. The results showed that CH@nFe0 allowed a higher Cr(VI) removal rate compared to nFe0 and CH. This might have derived from an enhanced reduction and adsorption of Cr(VI) by CH. Meanwhile, the network structure of the cellulose hydrogel served as a mass-transfer channel between Cr(VI) and nFe0. In addition, the increase of the initial solution pH minimized the removal of Cr(VI). This mechanism revealed that CH coating resulted in an enhancement of the adsorption capability and reducibility of CH@nFe0 with respect to Cr(VI). The CH@nFe0 composite is characterized by an advantageous mesoporous network structure and functional groups of amide and carboxylic acid, which provide additional active sites and promote mass transfer. This new three-dimensional (3-D) cellulose hydrogel coating containing nFe0 can be effectively used for the removal of Cr(VI) ions from aquatic environments.

Keywords: Adsorption and reduction.; Cellulose hydrogel.; Cr(VI).; Nanoscale nFe(0).