Mis-Expression of a Cranial Neural Crest Cell-Specific Gene Program in Cardiac Neural Crest Cells Modulates HAND Factor Expression, Causing Cardiac Outflow Tract Phenotypes

J Cardiovasc Dev Dis. 2020 Apr 20;7(2):13. doi: 10.3390/jcdd7020013.


Congenital heart defects (CHDs) occur with such a frequency that they constitute a significant cause of morbidity and mortality in both children and adults. A significant portion of CHDs can be attributed to aberrant development of the cardiac outflow tract (OFT), and of one of its cellular progenitors known as the cardiac neural crest cells (NCCs). The gene regulatory networks that identify cardiac NCCs as a distinct NCC population are not completely understood. Heart and neural crest derivatives (HAND) bHLH transcription factors play essential roles in NCC morphogenesis. The Hand1PA/OFT enhancer is dependent upon bone morphogenic protein (BMP) signaling in both cranial and cardiac NCCs. The Hand1PA/OFT enhancer is directly repressed by the endothelin-induced transcription factors DLX5 and DLX6 in cranial but not cardiac NCCs. This transcriptional distinction offers the unique opportunity to interrogate NCC specification, and to understand why, despite similarities, cranial NCC fate determination is so diverse. We generated a conditionally active transgene that can ectopically express DLX5 within the developing mouse embryo in a Cre-recombinase-dependent manner. Ectopic DLX5 expression represses cranial NCC Hand1PA/OFT-lacZ reporter expression more effectively than cardiac NCC reporter expression. Ectopic DLX5 expression induces broad domains of NCC cell death within the cranial pharyngeal arches, but minimal cell death in cardiac NCC populations. This study shows that transcription control of NCC gene regulatory programs is influenced by their initial specification at the dorsal neural tube.

Keywords: BMPs; DLX5; HAND1; cardiac defects; craniofacial defects; neural crest; transcriptional regulation.