DGKA Provides Platinum Resistance in Ovarian Cancer Through Activation of c-JUN-WEE1 Signaling

Clin Cancer Res. 2020 Jul 15;26(14):3843-3855. doi: 10.1158/1078-0432.CCR-19-3790. Epub 2020 Apr 27.

Abstract

Purpose: Although platinum compounds are the first-line treatment for ovarian cancer, the majority of patients relapse and develop resistance to treatment. However, the mechanism underlying resistance is unclear. The goal of our study is to decipher the mechanism by which a metabolic kinase, diacylglycerol kinase alpha (DGKA), confers platinum resistance in ovarian cancer.

Experimental design: Metabolic kinase RNAi synthetic lethal screening was used to identify a cisplatin resistance driver in ovarian cancer. DGKA variants were used to demonstrate the need for DGKA activity in cisplatin resistance. Phospho-proteomic and genomic screens were performed to identify downstream effectors of DGKA. Therapeutic efficacy of targeting DGKA was confirmed and clinical relevance of DGKA signaling was validated using ovarian cancer patient-derived tumors that had different responses to platinum-based therapy.

Results: We found that platinum resistance was mediated by DGKA and its product, phosphatidic acid (PA), in ovarian cancer. Proteomic and genomic screens revealed that DGKA activates the transcription factor c-JUN and consequently enhances expression of a cell-cycle regulator, WEE1. Mechanistically, PA facilitates c-JUN N-terminal kinase recruitment to c-JUN and its nuclear localization, leading to c-JUN activation upon cisplatin exposure. Pharmacologic inhibition of DGKA sensitized ovarian cancer cells to cisplatin treatment and DGKA-c-JUN-WEE1 signaling positively correlated with platinum resistance in tumors derived from patients with ovarian cancer.

Conclusions: Our study demonstrates how the DGKA-derived lipid messenger, PA, contributes to cisplatin resistance by intertwining with kinase and transcription networks, and provides preclinical evidence for targeting DGKA as a new strategy in ovarian cancer treatment to battle cisplatin resistance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Cell Cycle Proteins / metabolism
  • Cell Line, Tumor
  • Cell Nucleus / metabolism
  • Cisplatin / pharmacology*
  • Cisplatin / therapeutic use
  • Diacylglycerol Kinase / antagonists & inhibitors
  • Diacylglycerol Kinase / metabolism*
  • Drug Resistance, Neoplasm / drug effects
  • Drug Resistance, Neoplasm / genetics*
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Mice
  • Middle Aged
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / pathology
  • Ovary / pathology
  • Phosphatidic Acids / metabolism
  • Protein-Tyrosine Kinases / metabolism
  • Proto-Oncogene Proteins c-jun / metabolism*
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Xenograft Model Antitumor Assays

Substances

  • Cell Cycle Proteins
  • Phosphatidic Acids
  • Proto-Oncogene Proteins c-jun
  • Diacylglycerol Kinase
  • Protein-Tyrosine Kinases
  • WEE1 protein, human
  • JNK Mitogen-Activated Protein Kinases
  • Cisplatin