A Genome-Wide Analysis of DNA Methylation Identifies a Novel Association Signal for Lp(a) Concentrations in the LPA Promoter

PLoS One. 2020 Apr 28;15(4):e0232073. doi: 10.1371/journal.pone.0232073. eCollection 2020.

Abstract

Lipoprotein(a) [Lp(a)] is a major cardiovascular risk factor, which is largely genetically determined by one major gene locus, the LPA gene. Many aspects of the transcriptional regulation of LPA are poorly understood and the role of epigenetics has not been addressed yet. Therefore, we conducted an epigenome-wide analysis of DNA methylation on Lp(a) levels in two population-based studies (total n = 2208). We identified a CpG site in the LPA promoter which was significantly associated with Lp(a) concentrations. Surprisingly, the identified CpG site was found to overlap the SNP rs76735376. We genotyped this SNP de-novo in three studies (total n = 7512). The minor allele of rs76735376 (1.1% minor allele frequency) was associated with increased Lp(a) values (p = 1.01e-59) and explained 3.5% of the variation of Lp(a). Statistical mediation analysis showed that the effect on Lp(a) is rather originating from the base change itself and is not mediated by DNA methylation levels. This finding is supported by eQTL data from 208 liver tissue samples from the GTEx project, which shows a significant association of the rs76735376 minor allele with increased LPA expression. To evaluate, whether the association signal at rs76735376 may actually be derived from a stronger eQTL signal in LD with this SNP, eQTL association results of all correlated SNPs (r2≥0.1) were integrated with genetic association results. This analysis pinpointed to rs10455872 as the potential trigger of the effect of rs76735376. Furthermore, both SNPs coincide with short apo(a) isoforms. Adjusting for both, rs10455872 and the apo(a) isoforms diminished the effect size of rs76735376 to 5.38 mg/dL (p = 0.0463). This indicates that the effect of rs76735376 can be explained by both an independent effect of the SNP and a strong correlation with rs10455872 and apo(a) isoforms.

Grant support

The study was supported by the Austrian Science Fund (FWF) Project Number P266600-B13 to CL. The KORA study was initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. This work was supported by a grant (WA 4081/1-1) from the German Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.