FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Aug 5:236:118355. doi: 10.1016/j.saa.2020.118355. Epub 2020 Apr 13.

Abstract

Iron oxide nanoparticles (IONPs) have biomedical and biotechnological applications in magnetic imaging, drug-delivery, magnetic separation and purification. The biocompatibility of such particles may be improved by covering them with coating. In presented paper the biochemical anomalies of liver and kidney occurring in animals exposed to d-mannitol-coated iron(III) oxide nanoparticles (M-IONPs) were examined with Fourier transform infrared (FTIR) microspectroscopy. The dose of IONPs used in the study was significantly lower than those used so far in other research. Liver and kidney tissue sections were analysed by chemical mapping of infrared absorption bands originating from proteins, lipids, compounds containing phosphate groups, cholesterol and cholesterol esters. Changes in content and/or structure of the selected biomolecules were evaluated by comparison of the results obtained for animals treated with M-IONPs with those from control group. Biochemical analysis of liver samples demonstrated a few M-IONPs induced anomalies in the organ, mostly concerning the relative content of the selected compounds. The biomolecular changes, following exposition to nanoparticles, were much more intense within the kidney tissue. Biochemical aberrations found in the organ samples indicated at increase of tissue density, anomalies in fatty acids structure as well as changes in relative content of lipids and proteins. The simultaneous accumulation of lipids, phosphate groups as well as cholesterol and cholesterol esters in kidneys of rats exposed to IONPs may indicate that the particles stimulated formation of lipid droplets within the organ.

MeSH terms

  • Animals
  • Cholesterol / chemistry
  • Cholesterol / metabolism
  • Injections, Intravenous
  • Kidney / chemistry
  • Kidney / drug effects*
  • Kidney / metabolism
  • Lipid Metabolism / drug effects
  • Lipids / chemistry
  • Liver / chemistry
  • Liver / drug effects*
  • Liver / metabolism
  • Magnetic Iron Oxide Nanoparticles / administration & dosage
  • Magnetic Iron Oxide Nanoparticles / chemistry
  • Magnetic Iron Oxide Nanoparticles / toxicity*
  • Male
  • Mannitol / chemistry
  • Phosphates / chemistry
  • Phosphates / metabolism
  • Protein Structure, Secondary
  • Rats, Wistar
  • Spectroscopy, Fourier Transform Infrared / methods*

Substances

  • Lipids
  • Phosphates
  • Mannitol
  • Cholesterol