Aims: Adipocyte fatty acid-binding protein (A-FABP) is an adipokine implicating in various metabolic diseases. Elevated circulating levels of A-FABP correlate positively with poor prognosis in ischaemic stroke (IS) patients. No information is available concerning the role of A-FABP in the pathogenesis of IS. Experiments were designed to determine whether or not A-FABP mediates blood-brain barrier (BBB) disruption, and if so, to explore the molecular mechanisms underlying this deleterious effects.
Methods and results: Circulating A-FABP and its cerebral expression were increased in mice after middle cerebral artery occlusion. Genetic deletion and pharmacological inhibition of A-FABP alleviated cerebral ischaemia injury with reduced infarction volume, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was attenuated and accompanied by reduced degradation of tight junction proteins and induction of matrix metalloproteinases-9 (MMP-9). In patients with acute IS, elevated circulating A-FABP levels positively correlated with those of MMP-9 and cerebral infarct volume. Mechanistically, ischaemia-induced elevation of A-FABP selectively in peripheral blood monocyte-derived macrophages and cerebral resident microglia promoted MMP-9 transactivation by potentiating JNK/c-Jun signalling, enhancing degradation of tight junction proteins and BBB leakage. The detrimental effects of A-FABP were prevented by pharmacological inhibition of MMP-9.
Conclusion: A-FABP is a key mediator of cerebral ischaemia injury promoting MMP-9-mediated BBB disruption. Inhibition of A-FABP is a potential strategy to improve IS outcome.
Keywords: A-FABP; Blood–brain barrier; Ischaemic stroke; JNK/c-Jun signalling; MMP-9.
© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.