The SrrAB two-component system regulates Staphylococcus aureus pathogenicity through redox sensitive cysteines

Proc Natl Acad Sci U S A. 2020 May 19;117(20):10989-10999. doi: 10.1073/pnas.1921307117. Epub 2020 Apr 30.

Abstract

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.

Keywords: SrrAB two-component system; Staphylococcus aureus; cysteine disulfide bond; sensor histidine kinase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Bacterial Toxins
  • Base Sequence
  • Biofilms
  • Catalytic Domain
  • Cysteine / metabolism*
  • Disease Models, Animal
  • Endocarditis
  • Enterotoxins
  • Female
  • Gene Expression Regulation, Bacterial
  • Histidine Kinase / metabolism
  • Male
  • Models, Molecular
  • Mutation
  • Oxidation-Reduction
  • Protein Domains
  • Rabbits
  • Repressor Proteins / chemistry
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Sepsis
  • Staphylococcal Infections / metabolism
  • Staphylococcus aureus / genetics
  • Staphylococcus aureus / metabolism*
  • Staphylococcus aureus / pathogenicity
  • Superantigens
  • Thermotoga maritima
  • Virulence / genetics
  • Virulence / physiology

Substances

  • Bacterial Proteins
  • Bacterial Toxins
  • Enterotoxins
  • Repressor Proteins
  • SrrA protein, Staphyolococcus aureus
  • SrrB protein, Staphyolococcus aureus
  • Superantigens
  • enterotoxin F, Staphylococcal
  • Histidine Kinase
  • Cysteine

Associated data

  • PDB/6PAJ