Optimal time-jerk trajectory planning for the landing and walking integration mechanism using adaptive genetic algorithm method

Rev Sci Instrum. 2020 Apr 1;91(4):044501. doi: 10.1063/1.5133369.

Abstract

Because the current research on the lander mostly has focused on the traditional lander, the Soft Landing and Walking Integration (SLWI) lunar lander has yet not been studied. To solve the problem, first, a novel type of mobile landing mechanism is proposed and its kinematics is deduced. Second, in order to ensure the motion stability of the mechanism, the cubic spline curve is used to scheme the key points of the SLWI, and based on the weighted coefficient method, an optimal time-jerk pedestal trajectory planning model is established. Finally, the adaptive genetic algorithm (AGA) is used to search the global optimal solution of time-jerk trajectory planning model. Simulation shows that the motion performance of the mechanism is continuous and stable, which proves the rationality and effectiveness of the foot trajectory planning method. At the same time, the AGA converges to the optimal solution. Thus, the blindness of the initial optimization can be greatly reduced and the amount of computation can be saved. It also laid a theoretical foundation for the follow-up research of SLWI lunar lander.