Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 1:728:138814.
doi: 10.1016/j.scitotenv.2020.138814. Epub 2020 Apr 20.

Evaluation of the feed composition for an effective medium chain carboxylic acid production in an open culture fermentation

Affiliations

Evaluation of the feed composition for an effective medium chain carboxylic acid production in an open culture fermentation

Anna Duber et al. Sci Total Environ. .

Abstract

The objective of this study was to investigate the effect of substrate composition on chain elongation pathways and on shaping reactor microbiome during open culture fermentation (OCF). The process was performed in a continuous mode in an upflow anaerobic sludge blanket (UASB) reactor fed with either fresh acid whey (AW) or AW at controlled stage of prefermentation (with controlled content of electron donors). Dosing AW with an increasing ethanol loading rate led to ethanol oxidation and short chain carboxylic acids (SCCAs) generation. Change of the feedstock composition (higher lactate and lactose content and ethanol cut off) shifted the process outcome towards medium chain carboxylic acids (MCCAs) production, with caproate as the main product. The MCCAs production rate has grown from 0.7 ± 0 to 4.12 ± 1 g/L/day (38.3 ± 5 to 212.6 ± 60 mmol C/L/day) and reached specificity of 48 ± 18% mol C. The differentiation between microbiome samples confirmed the reactor microbiome shaped according to the feed composition. The only known caproic acid producers were represented by Caproiciproducens ssp., that reached a relative OTU abundance between 3 and 7%. The developed method enables to substitute the use of fossil resources with products from the OCF of waste and wastewater. Thus, it contributes to reduce the carbon footprint and enhance the sustainability of the chemical industry.

Keywords: Caproic acid; Ethanol; Medium chain carboxylic acids; Reactor microbiome; Resource recovery; Whey.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources