Clinical and Laboratory Predictors of In-hospital Mortality in Patients With Coronavirus Disease-2019: A Cohort Study in Wuhan, China

Clin Infect Dis. 2020 Nov 19;71(16):2079-2088. doi: 10.1093/cid/ciaa538.

Abstract

Background: This study aimed to develop mortality-prediction models for patients with coronavirus disease-2019 (COVID-19).

Methods: The training cohort included consecutive COVID-19 patients at the First People's Hospital of Jiangxia District in Wuhan, China, from 7 January 2020 to 11 February 2020. We selected baseline data through the stepwise Akaike information criterion and ensemble XGBoost (extreme gradient boosting) model to build mortality-prediction models. We then validated these models by randomly collected COVID-19 patients in Union Hospital, Wuhan, from 1 January 2020 to 20 February 2020.

Results: A total of 296 COVID-19 patients were enrolled in the training cohort; 19 died during hospitalization and 277 discharged from the hospital. The clinical model developed using age, history of hypertension, and coronary heart disease showed area under the curve (AUC), 0.88 (95% confidence interval [CI], .80-.95); threshold, -2.6551; sensitivity, 92.31%; specificity, 77.44%; and negative predictive value (NPV), 99.34%. The laboratory model developed using age, high-sensitivity C-reactive protein, peripheral capillary oxygen saturation, neutrophil and lymphocyte count, d-dimer, aspartate aminotransferase, and glomerular filtration rate had a significantly stronger discriminatory power than the clinical model (P = .0157), with AUC, 0.98 (95% CI, .92-.99); threshold, -2.998; sensitivity, 100.00%; specificity, 92.82%; and NPV, 100.00%. In the subsequent validation cohort (N = 44), the AUC (95% CI) was 0.83 (.68-.93) and 0.88 (.75-.96) for the clinical model and laboratory model, respectively.

Conclusions: We developed 2 predictive models for the in-hospital mortality of patients with COVID-19 in Wuhan that were validated in patients from another center.

Keywords: COVID-19; mortality; predictive model.