Tuning the Anode-Electrolyte Interface Chemistry for Garnet-Based Solid-State Li Metal Batteries

Adv Mater. 2020 Jun;32(23):e2000030. doi: 10.1002/adma.202000030. Epub 2020 May 4.

Abstract

Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li3 PO4 (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm2 and achieves a high critical current density of 2.2 mA cm-2 under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.

Keywords: garnet electrolytes; interfacial chemistry; lithium dendrites; solid-electrolyte interphase; solid-state batteries.