Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;581(7806):89-93.
doi: 10.1038/s41586-020-2231-y. Epub 2020 Apr 29.

Plant 22-nt siRNAs mediate translational repression and stress adaptation

Affiliations

Plant 22-nt siRNAs mediate translational repression and stress adaptation

Huihui Wu et al. Nature. 2020 May.

Abstract

Small interfering RNAs (siRNAs) are essential for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21, 22 or 24 nucleotides. The 21- and 24-nucleotide species mediate cleavage of messenger RNAs and DNA methylation2,3, respectively, but the biological functions of the 22-nucleotide siRNAs remain unknown. Here we report the identification and characterization of a group of endogenous 22-nucleotide siRNAs that are generated by the DICER-LIKE 2 (DCL2) protein in plants. When cytoplasmic RNA decay and DCL4 are deficient, the resulting massive accumulation of 22-nucleotide siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defects and pigmentation. Notably, two genes that encode nitrate reductases-NIA1 and NIA2-produce nearly half of the 22-nucleotide siRNAs. Production of 22-nucleotide siRNAs triggers the amplification of gene silencing and induces translational repression both gene specifically and globally. Moreover, these 22-nucleotide siRNAs preferentially accumulate upon environmental stress, especially those siRNAs derived from NIA1/2, which act to restrain translation, inhibit plant growth and enhance stress responses. Thus, our research uncovers the unique properties of 22-nucleotide siRNAs, and reveals their importance in plant adaptation to environmental stresses.

PubMed Disclaimer

Comment in

  • How plants silence stress.
    Baumann K. Baumann K. Nat Rev Mol Cell Biol. 2020 Jun;21(6):303. doi: 10.1038/s41580-020-0253-9. Nat Rev Mol Cell Biol. 2020. PMID: 32372018 No abstract available.

Similar articles

Cited by

References

    1. Guo, Z., Li, Y. & Ding, S. W. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19, 31–44 (2019). - PubMed - DOI
    1. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015). - PubMed - PMC - DOI
    1. Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014). - PubMed - DOI
    1. Song, X., Li, Y., Cao, X. & Qi, Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu. Rev. Plant Biol. 70, 489–525 (2019). - PubMed - DOI
    1. Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–725 (2006). - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources