Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 7;17(5):e1003115.
doi: 10.1371/journal.pmed.1003115. eCollection 2020 May.

The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study

Affiliations

The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study

Lana Fani et al. PLoS Med. .

Abstract

Background: Atherosclerotic cardiovascular disease (ASCVD) is driven by multifaceted contributions of the immune system. However, the dysregulation of immune cells that leads to ASCVD is poorly understood. We determined the association of components of innate and adaptive immunity longitudinally with ASCVD, and assessed whether arterial calcifications play a role in this association.

Methods and findings: Granulocyte (innate immunity) and lymphocyte (adaptive immunity) counts were determined 3 times (2002-2008, mean age 65.2 years; 2009-2013, mean age 69.0 years; and 2014-2015, mean age 78.5 years) in participants of the population-based Rotterdam Study without ASCVD at baseline. Participants were followed-up for ASCVD or death until 1 January 2015. A random sample of 2,366 underwent computed tomography at baseline to quantify arterial calcification volume in 4 vessel beds. We studied the association between immunity components with risk of ASCVD and assessed whether immunity components were related to arterial calcifications at baseline. Of 7,730 participants (59.4% women), 801 developed ASCVD during a median follow-up of 8.1 years. Having an increased granulocyte count increased ASCVD risk (adjusted hazard ratio for doubled granulocyte count [95% CI] = 1.78 [1.34-2.37], P < 0.001). Higher granulocyte counts were related to larger calcification volumes in all vessels, most prominently in the coronary arteries (mean difference in calcium volume [mm3] per SD increase in granulocyte count [95% CI] = 32.3 [9.9-54.7], P < 0.001). Respectively, the association between granulocyte count and incident coronary heart disease and stroke was partly mediated by coronary artery calcification (overall proportion mediated [95% CI] = 19.0% [-10% to 32.3%], P = 0.08) and intracranial artery calcification (14.9% [-10.9% to 19.1%], P = 0.05). A limitation of our study is that studying the etiology of ASCVD remains difficult within an epidemiological setting due to the limited availability of surrogates for innate and especially adaptive immunity.

Conclusions: In this study, we found that an increased granulocyte count was associated with a higher risk of ASCVD in the general population. Moreover, higher levels of granulocytes were associated with larger volumes of arterial calcification. Arterial calcifications may explain a proportion of the link between granulocytes and ASCVD.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Flowchart of study population.
ASCVD, atherosclerotic cardiovascular disease; CHD, coronary heart disease.

Similar articles

Cited by

References

    1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res. 2017;121(6):677–94. 10.1161/CIRCRESAHA.117.308903 - DOI - PubMed
    1. Fernandez-Ruiz I. Immune system and cardiovascular disease. Nat Rev Cardiol. 2016;13(9):503 10.1038/nrcardio.2016.127 - DOI - PubMed
    1. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol. 2004;5(10):971–4. 10.1038/ni1004-971 - DOI - PubMed
    1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. 10.1056/NEJMra043430 - DOI - PubMed
    1. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018;72(17):2071–81. 10.1016/j.jacc.2018.08.1043 - DOI - PMC - PubMed

Publication types

Grants and funding

This work was supported by the European Union's Horizon 2020 research and innovation programme [grant number 667375] (“CoSTREAM”); the Dutch Cancer Society [grant number NKI-20157737]; the Erasmus Medical Center and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research (NWO) [grant numbers 948-00-010, 918-46-615]; the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Ministry of Education, Culture and Science; the Ministry of Health, Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. Maryam Kavousi is supported by the VENI grant (91616079) from ZonMw. The funding source had no role in study design, collection, analysis, interpretation of data, writing of the report or decision to submit the article for publication.