The homogenous polysaccharide SY01-23 purified from leaf of Morus alba L. has bioactivity on human gut Bacteroides ovatus and Bacteroides cellulosilyticus

Int J Biol Macromol. 2020 May 7:158:698-707. doi: 10.1016/j.ijbiomac.2020.05.009. Online ahead of print.

Abstract

Function of mulberry leaf (Morus alba L.) polysaccharide has been reported on antitumor, immunostimulatory and anti-inflammatory effects. However, the bioactivity on human gut microbiota is unclear so far. Here, three homogenous polysaccharides named SY01-21, SY01-22, SY01-23 were isolated from mulberry leaf with molecular weight 57 kDa, 25 kDa and 7.2 kDa, respectively. The monosaccharide composition of SY01-21 contained rhamnose, galactose and arabinose in a molar ratio of 7.60:43.52:48.88. SY01-22 contained rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose in a molar ratio of 14.61:9.06:1.35:34.65:2.99:37.34. SY01-23 contained rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose and arabinose in a molar ratio of 23.00:4.12:24.60:5.74:17.28:1.12:24.13. Bioactivity test showed SY01-21 promoted the growth of Bacteroides cellulosilyticus (BC) while SY01-22 benefited the growth of Bacteroides ovatus (BO). Interestingly, SY01-23 boosted the growth of both BO and BC. However, Bacteroides thetaiotamicron (BT) only grew on 5 mg/mL SY01-21. Intriguingly, the growth of co-culture of BT with BO or BC was better than monoculture. This suggested that cross-feeding might exist between them. Besides, we found BO and BC generated acetate and propionate by utilizing SY01-23. The above results suggested that SY01-23 might modify human gut microbiota by driving colonization of Bacteroides in the gut to improve wellness.

Keywords: Cross-feeding; Human gut microbiota; Morus alba L.; Polysaccharide; Short-chain fatty acids.