DICOM-RT Ion interface to utilize MC simulations in routine clinical workflow for proton pencil beam radiotherapy

Phys Med. 2020 Jun;74:1-10. doi: 10.1016/j.ejmp.2020.04.018. Epub 2020 May 7.

Abstract

To adopt Monte Carlo (MC) simulations as an independent dose calculation method for proton pencil beam radiotherapy, an interface that converts the plan information in DICOM format into MC components such as geometries and beam source is a crucial element. For this purpose, a DICOM-RT Ion interface (https://github.com/topasmc/dicom-interface) has been developed and integrated into the TOPAS MC code to perform such conversions on-the-fly. DICOM-RT objects utilized in this interface include Ion Plan (RTIP), Ion Beams Treatment Record (RTIBTR), CT image, and Dose. Beamline geometries, gantry and patient coordinate systems, and fluence maps are determined from RTIP and/or RTIBTR. In this interface, DICOM information is processed and delivered to a MC engine in two steps. A MC model, which consists of beamline geometries and beam source, to represent a treatment machine is created by a DICOM parser of the interface. The complexities from different DICOM types, various beamline configurations and source models are handled in this step. Next, geometry information and beam source are transferred to TOPAS on-the-fly via the developed TOPAS extensions. This interface with two treatment machines was successfully deployed into our automated MC workflow which provides simulated dose and LET distributions in a patient or a water phantom automatically when a new plan is identified. The developed interface provides novel features such as handling multiple treatment systems based on different DICOM types, DICOM conversions on-the-fly, and flexible sampling methods that significantly reduce the burden of handling DICOM based plan or treatment record information for MC simulations.

MeSH terms

  • Humans
  • Monte Carlo Method*
  • Proton Therapy*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Tomography, X-Ray Computed