Metabolism and Biological Activity of α-tocopherol Derived From Vitamin E-enriched Transgenic Maize in Broilers

J Sci Food Agric. 2020 May 9. doi: 10.1002/jsfa.10480. Online ahead of print.

Abstract

Background: The aim of this study was to investigate the metabolism of α-tocopherol derived from vitamin E-enriched transgenic maize (VER) and its effects on antioxidant and immune functions in broilers aged 1-42 days. A total of 360 1-day-old male broilers were randomly divided into three groups containing six replicates with 20 broilers per replicate. The negative control (NC) group and the positive control (PC) group were given non-GM maize and non-GM maize plus exogenous vitamin E (VE), respectively, and the VER group was given VER, replacing the non-GM maize given to the NC group. Between days 1 and 21 and days 22 and 42, VE levels were 4.38 and 4.63 mg kg-1 in the NC group, and 14.11 and 14.91 mg kg-1 in the PC and VER group, respectively.

Results: The results showed that α-tocopherol from both VER and additives increased α-tocopherol transfer protein and cytochrome P450 concentrations. Serum α-tocopherol and α-tocopherylquinone levels of broilers in the PC and VER groups were also significantly higher than those in the NC group (P < 0.05). Compared with the NC group, broilers in both groups that received α-tocopherol had reduced NF-κB p65 concentrations, significantly decreased serum prostaglandin E2 , interleukin-6, malondialdehyde, and hydrogen peroxide levels (P < 0.05), and significantly increased glutathione, glutathione peroxidase, and total antioxidant capacity (P < 0.05).

Conclusion: In summary, both VER and non-GM maize fortified with exogenous VE showed similar effects on broilers, indicating that the α-tocopherol in VER has sufficient biological activity. © 2020 Society of Chemical Industry.

Keywords: antioxidant function; broilers; immune function; transgenic maize; vitamin E.