piRNA and Transposon Dynamics in Drosophila: A Female Story

Genome Biol Evol. 2020 Jun 1;12(6):931-947. doi: 10.1093/gbe/evaa094.


The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.

Keywords: Drosophila melanogaster; piRNA; germline; transposable elements.