Maternal separation-induced increases in vascular stiffness are independent of circulating angiotensinogen levels

J Appl Physiol (1985). 2020 Jul 1;129(1):58-65. doi: 10.1152/japplphysiol.00703.2019. Epub 2020 May 14.

Abstract

The renin-angiotensin system (RAS) precursor angiotensinogen (AGT) has been implicated in the functional and mechanical alterations of the vascular wall in response to high-fat diet (HFD). Previously, we showed that HFD exacerbates angiotensin II-induced constriction in isolated aortic rings from male rats exposed to maternal separation (MatSep), a model of early-life stress. Thus, the aim of this study was to investigate whether MatSep increases AGT secretion promoting vascular stiffness in rats fed a HFD. Male Wistar-Kyoto MatSep offspring were separated (3 h/day, postnatal days 2-14), and undisturbed littermates were used as controls. At weaning, rats were fed for 17 wk a normal diet (ND) or a HFD, 18% or 60% kcal from fat, respectively. In plasma, there was a main effect of MatSep reducing AGT concentration (P < 0.05) but no effect due to diet. In urine, ND-fed MatSep rats displayed higher AGT concentrations that were further increased by HFD (P < 0.05 vs. control). AGT mRNA abundance and protein expression were increased in adipose tissue from HFD-fed MatSep rats compared with control rats (P < 0.05). No significant differences in liver and kidney AGT levels were found between groups. In addition, MatSep augmented vascular stiffness assessed on freshly isolated aortic rings from ND-fed rats (P < 0.05), yet HFD did not worsen vascular stiffness in either MatSep or control rats. There was no correlation between plasma AGT and vascular stiffness in ND-fed rats; however, this relationship was negative in HFD-fed MatSep rats only (P < 0.05). Therefore, this study shows that MatSep-induced increases in vascular stiffness are independent of diet or plasma AGT.NEW & NOTEWORTHY This study demonstrates that there was no correlation between circulating levels of angiotensinogen (AGT) and the development of vascular stiffness in rats exposed to early-life stress and fed a normal diet. This study also shows that early-life stress-induced hypersensitive vascular contractility to angiotensin II in rats fed a high-fat diet is independent of circulating levels of AGT and occurs without further progression of vascular stiffness. Our data show that early-life stress primes the adipose tissue to secrete AGT in a sex- and species-independent fashion.

Keywords: angiotensinogen; high-fat diet; maternal separation; vascular stiffness.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II
  • Angiotensinogen*
  • Animals
  • Diet, High-Fat
  • Male
  • Maternal Deprivation
  • Rats
  • Rats, Inbred WKY
  • Vascular Stiffness*

Substances

  • Angiotensinogen
  • Angiotensin II