Background: The use of wireless telecommunication systems such as wireless fidelity (Wi-Fi)-enabled devices has steadily increased in recent years. There are persistent concerns that radiofrequency electromagnetic field (RF-EMF) exposure might affect health. Possible effects of RF-EMF exposure on human sleep were examined with regard to mobile phones and base stations, but not with regard to Wi-Fi exposure.
Objectives: The present double-blind, sham-controlled, randomized, fully counterbalanced cross-over study addressed for the first time the question whether a whole night Wi-Fi exposure has an effect on sleep.
Methods: Thirty-four healthy young male subjects (mean ± SD: 24.1 ± 2.9 years) spent five nights in the sleep laboratory. A screening and adaptation night was followed by two experimental nights. Each of the experimental nights was preceded by a baseline night. Sleep was evaluated at the subjective level by a questionnaire and at the objective level (macro- and microstructure) by polysomnography. Either 2.45 GHz Wi-Fi (max psSAR10g of 6.4 mW/kg) or sham signals were delivered by a newly developed head exposure facility.
Results: Results showed no statistically significant acute effects of a whole-night Wi-Fi exposure on subjective sleep parameters as well as on parameters characterizing the macrostructure of sleep. Analyses of the microstructure of sleep revealed a reduction in global EEG power in the alpha frequency band (8.00-11.75 Hz) during NREM sleep under acute Wi-Fi exposure compared to sham.
Discussion: The results of the present human experimental study are well in line with several other neurophysiological studies showing that acute RF-EMF exposure has no effect on the macrostructure of sleep. The slight physiological changes in EEG power observed under Wi-Fi exposure are neither reflected in the subjective assessment of sleep nor at the level of objective measurements. The present results are not indicative of a sleep disturbing effect of Wi-Fi exposure.
Keywords: Health; Polysomnography; Radiofrequency electromagnetic fields; Sleep macrostructure; Sleep microstructure; WLAN.
Copyright © 2020 Elsevier GmbH. All rights reserved.