Deformable shape modeling approaches that describe objects in terms of their medial axis geometry (e.g., m-reps [10]) yield rich geometrical features that can be useful for analyzing the shape of sheet-like biological structures, such as the myocardium. We present a novel shape analysis approach that combines the benefits of medial shape modeling and diffeomorphometry. Our algorithm is formulated as a problem of matching shapes using diffeomorphic flows under constraints that approximately preserve medial axis geometry during deformation. As the result, correspondence between the medial axes of similar shapes is maintained. The approach is evaluated in the context of modeling the shape of the left ventricular wall from 3D echocardiography images.