Observation of spatial self-phase modulation induced via two competing mechanisms

Opt Lett. 2020 May 15;45(10):2850-2853. doi: 10.1364/OL.392689.

Abstract

Two spatial self-phase modulation (SSPM) patterns were observed in suspensions of Bi2TeSe2 nanosheets. Two mechanisms were found to produce SSPM with different occurrence times and power dependence. The Type I (narrow) rings are attributed to the coherent third-order nonlinear optical Kerr effect, which induces self-diffraction in 2D materials, and the Type II (wide) rings are assigned to the contribution of a thermal effect. The nonlinear refractive index of Bi2TeSe2 is found to be 2.30×10-5cm2W-1 at 700 nm. The findings described here provide an explanation for the formation of rings in 2D systems due to SSPM.