Cyclin A2 is essential for mouse gonocyte maturation

Cell Cycle. 2020 Jul;19(13):1654-1664. doi: 10.1080/15384101.2020.1762314. Epub 2020 May 18.

Abstract

In mammals, male gonocytes are derived from primordial germ cells during embryogenesis, enter a period of mitotic proliferation, and then become quiescent until birth. After birth, the gonocytes proliferate and migrate from the center of testicular cord toward the basement membrane to form the pool of spermatogonial stem cells (SSCs) and establish the SSC niche architecture. However, the molecular mechanisms underlying gonocyte proliferation, migration and differentiation are largely unknown. Cyclin A2 is a key component of the cell cycle and required for cell proliferation. Here, we show that cyclin A2 is required in mouse male gonocyte development and the establishment of spermatogenesis in the neonatal testis. Loss of cyclin A2 function in embryonic gonocytes by targeted gene disruption affected the regulation of the male gonocytes to SSC transition, resulting in the disruption of SSC pool formation, imbalance between SSC self-renewal and differentiation, and severely abnormal spermatogenesis in the adult testis.

Keywords: Cyclin A2; gonocyte differentiation; spermatogonial stem cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / pathology
  • Animals
  • Animals, Newborn
  • Basement Membrane / metabolism
  • Cell Count
  • Cell Differentiation*
  • Cell Movement
  • Cyclin A2 / genetics
  • Cyclin A2 / metabolism*
  • Embryo, Mammalian / cytology
  • Gene Deletion
  • Gene Expression Regulation, Developmental
  • Male
  • Mice
  • Models, Biological
  • Phenotype
  • Spermatogenesis
  • Spermatogonia / cytology*
  • Spermatogonia / metabolism*
  • Stem Cells / cytology
  • Testis / pathology

Substances

  • Cyclin A2