Cultured mouse embryonic stem cells are a heterogeneous population with diverse differentiation potential. In particular, the subpopulation marked by Zscan4 expression has high stem cell potency and shares with 2 cell stage preimplantation embryos both genetic and epigenetic mechanisms that orchestrate zygotic genome activation. Although embryonic de novo genome activation is known to rely on metabolites, a more extensive metabolic characterization is missing. Here we analyze the Zscan4+ mouse stem cell metabolic phenotype associated with pluripotency maintenance and cell reprogramming. We show that Zscan4+ cells have an oxidative and adaptable metabolism, which, on one hand, fuels a high bioenergetic demand and, on the other hand, provides intermediate metabolites for epigenetic reprogramming. Our findings enhance our understanding of the metastable Zscan4+ stem cell state with potential applications in regenerative medicine.
Keywords: cell intermediate metastate; embryonic stem cells; heterogeneity; metabolism; pluripotency.
© 2020 The Authors.