Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands

Front Immunol. 2020 Apr 30:11:678. doi: 10.3389/fimmu.2020.00678. eCollection 2020.

Abstract

The innate immune system, which senses invading pathogens, plays a critical role as the first line of host defense. After recognition of foreign RNA ligands (e.g., RNA viruses), host cells generate an innate immune or antiviral response via the interferon-mediated signaling pathway. Retinoic acid-inducible gene I (RIG-1) acts as a major sensor that recognizes a broad range of RNA ligands in mammals; however, chickens lack a RIG-1 homolog, meaning that RNA ligands should be recognized by other cellular sensors such as melanoma differentiation-associated protein 5 (MDA5) and toll-like receptors (TLRs). However, it is unclear which of these cellular sensors compensates for the loss of RIG-1 to act as the major sensor for RNA ligands. Here, we show that chicken MDA5 (cMDA5), rather than chicken TLRs (cTLRs), plays a pivotal role in the recognition of RNA ligands, including poly I:C and influenza virus. First, we used a knockdown approach to show that both cMDA5 and cTLR3 play roles in inducing interferon-mediated innate immune responses against RNA ligands in chicken DF-1 cells. Furthermore, targeted knockout of cMDA5 or cTLR3 in chicken DF-1 cells revealed that loss of cMDA5 impaired the innate immune responses against RNA ligands; however, the responses against RNA ligands were retained after loss of cTLR3. In addition, double knockout of cMDA5 and cTLR3 in chicken DF-1 cells abolished the innate immune responses against RNA ligands, suggesting that cMDA5 is the major sensor whereas cTLR3 is a secondary sensor. Taken together, these findings provide an understanding of the functional role of cMDA5 in the recognition of RNA ligands in chicken DF-1 cells and may facilitate the development of an innate immune-deficient cell line or chicken model.

Keywords: CRISPR/Cas9; MDA5; PRRs; RNA ligand; TLRs; chicken; innate immunity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Chickens
  • DEAD Box Protein 58 / physiology
  • Fibroblasts / immunology
  • Immunity, Innate*
  • Interferon-Induced Helicase, IFIH1 / physiology*
  • Interferon-beta / genetics
  • Ligands
  • Orthomyxoviridae / physiology
  • Poly I-C / pharmacology
  • Promoter Regions, Genetic
  • RNA, Double-Stranded / metabolism*
  • Toll-Like Receptor 3 / physiology*
  • Virus Replication

Substances

  • Ligands
  • RNA, Double-Stranded
  • Toll-Like Receptor 3
  • Interferon-beta
  • DEAD Box Protein 58
  • Interferon-Induced Helicase, IFIH1
  • Poly I-C