Deep sequencing of non-enzymatic RNA primer extension
- PMID: 32427335
- PMCID: PMC7337528
- DOI: 10.1093/nar/gkaa400
Deep sequencing of non-enzymatic RNA primer extension
Erratum in
-
Correction to 'Deep sequencing of non-enzymatic RNA primer extension'.Nucleic Acids Res. 2022 Jul 8;50(12):7199. doi: 10.1093/nar/gkac561. Nucleic Acids Res. 2022. PMID: 35736233 Free PMC article. No abstract available.
Abstract
Life emerging in an RNA world is expected to propagate RNA as hereditary information, requiring some form of primitive replication without enzymes. Non-enzymatic template-directed RNA primer extension is a model of the copying step in this posited form of replication. The sequence space accessed by primer extension dictates potential pathways to self-replication and, eventually, ribozymes. Which sequences can be accessed? What is the fidelity of the reaction? Does the recently illuminated mechanism of primer extension affect the distribution of sequences that can be copied? How do sequence features respond to experimental conditions and prebiotically relevant contexts? To help answer these and related questions, we here introduce a deep-sequencing methodology for studying RNA primer extension. We have designed and vetted special RNA constructs for this purpose, honed a protocol for sample preparation and developed custom software that analyzes sequencing data. We apply this new methodology to proof-of-concept controls, and demonstrate that it works as expected and reports on key features of the sequences accessed by primer extension.
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures
Similar articles
-
Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles.Orig Life Evol Biosph. 2023 Jun;53(1-2):43-60. doi: 10.1007/s11084-023-09636-z. Epub 2023 May 27. Orig Life Evol Biosph. 2023. PMID: 37243884
-
Chemical primer extension: individual steps of spontaneous replication.Chem Biodivers. 2007 Apr;4(4):784-802. doi: 10.1002/cbdv.200790064. Chem Biodivers. 2007. PMID: 17443889
-
Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11063-8. doi: 10.1073/pnas.1106501108. Epub 2011 Jun 3. Proc Natl Acad Sci U S A. 2011. PMID: 21642531 Free PMC article.
-
The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions.Chembiochem. 2024 Apr 2;25(7):e202300859. doi: 10.1002/cbic.202300859. Epub 2024 Feb 12. Chembiochem. 2024. PMID: 38282207 Review.
-
The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.J Am Chem Soc. 2021 Mar 10;143(9):3267-3279. doi: 10.1021/jacs.0c12955. Epub 2021 Feb 26. J Am Chem Soc. 2021. PMID: 33636080 Review.
Cited by
-
Emergence of ATP- and GTP-Binding Aptamers from Single RNA Sequences by Error-Prone Replication and Selection.ChemSystemsChem. 2023 Jul 2;5(5):syst.202300006. doi: 10.1002/syst.202300006. eCollection 2023 Sep. ChemSystemsChem. 2023. PMID: 38074198 Free PMC article.
-
Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension.Nucleic Acids Res. 2021 Apr 19;49(7):3681-3691. doi: 10.1093/nar/gkab173. Nucleic Acids Res. 2021. PMID: 33744957 Free PMC article.
-
Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates.Nucleic Acids Res. 2022 Jan 11;50(1):35-45. doi: 10.1093/nar/gkab1202. Nucleic Acids Res. 2022. PMID: 34893864 Free PMC article.
-
Emergence of catalytic function in prebiotic information-coding polymers.Elife. 2024 Mar 26;12:RP91397. doi: 10.7554/eLife.91397. Elife. 2024. PMID: 38530342 Free PMC article.
-
Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles.Orig Life Evol Biosph. 2023 Jun;53(1-2):43-60. doi: 10.1007/s11084-023-09636-z. Epub 2023 May 27. Orig Life Evol Biosph. 2023. PMID: 37243884
References
-
- Gilbert W. Origin of life—the RNA world. Nature. 1986; 319:618–618.
-
- Orgel L.E. Was RNA the first genetic polymer. Evolutionary Tinkering in Gene Expression. 1989; 169:215–224.
-
- Joyce G.F. The antiquity of RNA-based evolution. Nature. 2002; 418:214–221. - PubMed
-
- Krishnamurthy R. On the emergence of RNA. Isr. J. Chem. 2015; 55:837–850.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
