Fingerprinting-Based Indoor Localization Using Interpolated Preprocessed CSI Phases and Bayesian Tracking

Sensors (Basel). 2020 May 18;20(10):2854. doi: 10.3390/s20102854.


Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver's location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver's motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios.

Keywords: Bayesian tracking; CSI; fingerprinting; indoor localization.