Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity
- PMID: 32448072
- PMCID: PMC7287339
- DOI: 10.1098/rsta.2019.0345
Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity
Abstract
In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Keywords: Gaussian process; atrial fibrillation; cardiac conduction velocity; local activation time; manifold; probabilistic interpolation.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
Similar articles
-
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate.Med Biol Eng Comput. 2022 Sep;60(9):2463-2478. doi: 10.1007/s11517-022-02621-0. Epub 2022 Jul 22. Med Biol Eng Comput. 2022. PMID: 35867323 Free PMC article. Review.
-
Probabilistic Interpolation of Uncertain Local Activation Times on Human Atrial Manifolds.IEEE Trans Biomed Eng. 2020 Jan;67(1):99-109. doi: 10.1109/TBME.2019.2908486. Epub 2019 Apr 9. IEEE Trans Biomed Eng. 2020. PMID: 30969911
-
A technique for measuring anisotropy in atrial conduction to estimate conduction velocity and atrial fibre direction.Comput Biol Med. 2019 Jan;104:278-290. doi: 10.1016/j.compbiomed.2018.10.019. Epub 2018 Nov 1. Comput Biol Med. 2019. PMID: 30415767 Free PMC article.
-
Regional conduction velocity calculation from clinical multichannel electrograms in human atria.Comput Biol Med. 2018 Jan 1;92:188-196. doi: 10.1016/j.compbiomed.2017.11.017. Epub 2017 Nov 26. Comput Biol Med. 2018. PMID: 29223114
-
The atria: from morphology to function.J Cardiovasc Electrophysiol. 2011 Feb;22(2):223-35. doi: 10.1111/j.1540-8167.2010.01887.x. Epub 2010 Aug 31. J Cardiovasc Electrophysiol. 2011. PMID: 20812935 Review.
Cited by
-
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds.Sci Rep. 2022 Oct 4;12(1):16572. doi: 10.1038/s41598-022-20745-z. Sci Rep. 2022. PMID: 36195766 Free PMC article.
-
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate.Med Biol Eng Comput. 2022 Sep;60(9):2463-2478. doi: 10.1007/s11517-022-02621-0. Epub 2022 Jul 22. Med Biol Eng Comput. 2022. PMID: 35867323 Free PMC article. Review.
-
Dispersion of repolarization increases with cardiac resynchronization therapy and is associated with left ventricular reverse remodeling.J Electrocardiol. 2022 May-Jun;72:120-127. doi: 10.1016/j.jelectrocard.2022.04.001. Epub 2022 Apr 18. J Electrocardiol. 2022. PMID: 35468456 Free PMC article.
-
Manifold Approximating Graph Interpolation of Cardiac Local Activation Time.IEEE Trans Biomed Eng. 2022 Oct;69(10):3253-3264. doi: 10.1109/TBME.2022.3166447. Epub 2022 Sep 19. IEEE Trans Biomed Eng. 2022. PMID: 35404808 Free PMC article.
-
Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification.Front Physiol. 2022 Mar 7;13:757159. doi: 10.3389/fphys.2022.757159. eCollection 2022. Front Physiol. 2022. PMID: 35330935 Free PMC article.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
