Logical modeling of cell fate specification-Application to T cell commitment

Curr Top Dev Biol. 2020;139:205-238. doi: 10.1016/bs.ctdb.2020.02.008. Epub 2020 Mar 19.


Boolean approaches and extensions thereof are becoming increasingly popular to model signaling and regulatory networks, including those controlling cell differentiation, pattern formation and embryonic development. Here, we describe a logical modeling framework relying on three steps: the delineation of a regulatory graph, the specification of multilevel components, and the encoding of Boolean rules specifying the behavior of model components depending on the levels or activities of their regulators. Referring to a non-deterministic, asynchronous updating scheme, we present several complementary methods and tools enabling the computation of stable activity patterns, the verification of the reachability of such patterns, as well as the generation of mean temporal evolution curves and the computation of the probabilities to reach distinct activity patterns. We apply this logical framework to the regulatory network controlling T lymphocyte specification. This process involves cross-regulations between specific T cell regulatory factors and factors driving alternative differentiation pathways, which remain accessible during the early steps of thymocyte development. Many transcription factors needed for T cell specification are required in other hematopoietic differentiation pathways and are combined in a fine-tuned, time-dependent fashion to achieve T cell commitment. Using the software GINsim, we integrated current knowledge into a dynamical model, which recapitulates the main developmental steps from early progenitors entering the thymus up to T cell commitment, as well as the impact of various documented environmental and genetic perturbations. Our model analysis further enabled the identification of several knowledge gaps. The model, software and whole analysis workflow are provided in computer-readable and executable form to ensure reproducibility and ease extensions.

Keywords: Cell commitment; Gene-regulatory network; Logical/Boolean model; Model checking; Notch signaling; Stochastic simulation; T cell development; Thymus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Differentiation / genetics*
  • Computer Simulation
  • Gene Expression Regulation, Developmental*
  • Gene Regulatory Networks*
  • Models, Genetic*
  • T-Lymphocytes / cytology
  • T-Lymphocytes / metabolism*
  • Thymocytes / cytology
  • Thymocytes / metabolism
  • Thymus Gland / cytology
  • Thymus Gland / embryology
  • Thymus Gland / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism


  • Transcription Factors