Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium

Environ Pollut. 2020 Oct;265(Pt A):114827. doi: 10.1016/j.envpol.2020.114827. Epub 2020 May 19.

Abstract

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (S. sclerotiorum), one of the most destructive diseases in many crops including Brassica napus L. The extensive use of fungicides to control S. sclerotiorum caused severe damage to the environment in the long term. Increasing study reported that selenium (Se) is a beneficial element for plant by promoting growth and enhancing disease resistance. In this study, it was found that Se in soil shortened lesion length by 19.14% on rape stem infected with S. sclerotiorum. While resistance mechanism of rape stem against S. sclerotiorum remains unknown. Transcriptomic analysis of rape stem was performed and the results indicated that genes related to antifungal pathways were up-regulated. Moreover, metabonomic analysis was carried out to study the inhibitive effect of the dissolved organic matter derived from rape straw with Se pretreatment in soil (RSDOMSe) on S. sclerotiorum mycelium, results showed that RSDOMSe caused severe damage to energy metabolism of mycelium. Further study indicated that RSDOMSe decreased the pathogenicity of mycelium on rape leaves significantly, and enhanced content of chlorophyII, carotenoids, OD phenol and activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) in rape leaves, which suggested that RSDOMSe plays a positive role in regulating oxidative stress responses of plant when infected with S. sclerotiorum. In addition, when compared with dimcthachlon (DIM) treatment alone, DIM combined with RSDOMSe resulted in higher inhibition on mycelial growth of S. sclerotiorum (the inhibition ratio of nearly 60%). Results in this study suggested that Se enhanced the resistance of rape stem against S. sclerotiorum because of the up-regulated genes related to antifungal pathways, and RSDOMSe improved the mycelial growth inhibition and decreased the pathogenicity of mycelium on rape leaves. Overall, Se as well as Se-enrich byproducts, possessed great potential to be developed as ecological fungicides for controlling S. sclerotiorum.

Keywords: Metabolome; Rape straw; Sclerotinia sclerotiorum; Selenium; Transcriptome.

MeSH terms

  • Ascomycota*
  • Brassica napus*
  • Mycelium
  • Plant Diseases
  • Selenium*
  • Soil

Substances

  • Soil
  • Selenium