Synthesis and Aldose Reductase Inhibitory Effect of Some New Hydrazinecarbothioamides and 4-Thiazolidinones Bearing an Imidazo[2,1- b]Thiazole Moiety

Turk J Pharm Sci. 2019 Mar;16(1):1-7. doi: 10.4274/tjps.05900. Epub 2018 Dec 31.

Abstract

Objectives: To synthesize and characterize 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-alkyl/arylhydrazinecarbothioamide and 3-alkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-nonsubstituted/methyl-4-thiazolidinone derivatives and evaluate them for their aldose reductase (AR) inhibitory effect.

Materials and methods: 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-alkyl/arylhydrazinecarbothioamides (3a-f) and 3-alkyl/aryl-2-[((6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl)acetyl)hydrazono]-5-nonsubstituted/methyl-4-thiazolidinones (4a-j) were synthesized from 2-[6-(4-bromophenyl)imidazo[2,1-b]thiazole-3-yl]acetohydrazide (2). Their structures were elucidated by elemental analyses and spectroscopic data. The synthesized compounds were tested for their ability to inhibit rat kidney AR.

Results: Among the synthesized compounds, 2-[[6-(4-bromophenyl)imidazo[2,1-b]thiazol-3-yl]acetyl]-N-benzoylhydrazinecarbothioamide (3d) showed the best AR inhibitory activity.

Conclusion: The findings of this study indicate that the different derivatives of the compounds in this study may be considered interesting candidates for future research.

Keywords: 1-b]thiazole; 4-thiazolidinone; Aldose reductase inhibition; Hydrazinecarbothioamide; imidazo[2.