Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic Dynamics

J Chem Theory Comput. 2020 Jul 14;16(7):4098-4106. doi: 10.1021/acs.jctc.0c00409. Epub 2020 Jun 9.

Abstract

Electronically nonadiabatic dynamics methods based on a self-consistent potential, such as semiclassical Ehrenfest and coherent switching with decay of mixing, have a number of advantages but are computationally slower than approximations based on an unaveraged potential because they require evaluation of all components of the nonadiabatic coupling vector. Here we introduce a new approximation to the self-consistent potential that does not have this computational drawback. The new approximation uses time-derivative couplings evaluated by overlap integrals of electronic wave functions to approximate the nonadiabatic coupling terms in the equations of motion. We present a numerical test of the method for ethylene that shows there is little loss of accuracy in the ensemble-averaged results. This new approximation to the self-consistent potential makes direct dynamics calculations with self-consistent potentials more efficient for complex systems and makes them practically affordable for some cases where the cost was previously too high.