Is cellular energy monitoring more responsive to hypoxia than pulse oximetry?

Sleep Breath. 2020 Dec;24(4):1633-1643. doi: 10.1007/s11325-020-02104-2. Epub 2020 May 26.


Purpose: Pulse oximetry is the current standard for detecting drops in arterial blood oxygen saturation (SpO2) associated with obstructive sleep apnea and hypopnea events in polysomnographic (PSG) testing. However, cellular energy monitoring (CE monitoring), a measure related to cellular hypoxia in the skin, is likely to be more responsive to inadequate breathing during sleep because during hypoxic challenge, such as occurs during apneic events, regulatory mechanisms restrict blood flow to the skin to preferentially maintain SpO2 for more vital organs. We carried out initial proof of concept testing to determine if CE monitoring has promise for being more responsive to hypoxic challenge occurring during sleep-disordered breathing (SDB) than pulse oximetry.

Methods: We assessed both CE monitoring and pulse oximetry in a series of conditions which affect oxygen supply: (1) breathing nitrogen or 100% oxygen, (2) physical exertion, and (3) studying a night of sleep in an individual known to be a loud snorer. We also present the results of a preliminary study comparing CE monitoring to pulse oximetry in eight individuals undergoing standard clinical overnight polysomnography for suspected SDB.

Results: CE monitoring is responsive to changes in cellular oxygen supply to the skin and detects hypoxia during SDB events that is not detected by pulse oximetry.

Conclusion: CE monitoring is a promising tool for identifying pathology at the mild end of the SDB spectrum.

Keywords: Cellular energy monitor; Cellular hyperoxia; Cellular hypoxia; Primary snoring; Sleep disordered breathing.

MeSH terms

  • Adult
  • Aged
  • Energy Metabolism
  • Female
  • Humans
  • Hypoxia / diagnosis*
  • Male
  • Middle Aged
  • Monitoring, Physiologic / methods*
  • Oximetry*
  • Pilot Projects
  • Sleep Apnea Syndromes / complications*
  • Wearable Electronic Devices