The frontier of simulation-based inference
- PMID: 32471948
- PMCID: PMC7720103
- DOI: 10.1073/pnas.1912789117
The frontier of simulation-based inference
Abstract
Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly developing field of simulation-based inference and identify the forces giving additional momentum to the field. Finally, we describe how the frontier is expanding so that a broad audience can appreciate the profound influence these developments may have on science.
Keywords: approximate Bayesian computation; implicit models; likelihood-free inference; neural density estimation; statistical inference.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
Fundamentals and Recent Developments in Approximate Bayesian Computation.Syst Biol. 2017 Jan 1;66(1):e66-e82. doi: 10.1093/sysbio/syw077. Syst Biol. 2017. PMID: 28175922 Free PMC article.
-
Mining gold from implicit models to improve likelihood-free inference.Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5242-5249. doi: 10.1073/pnas.1915980117. Epub 2020 Feb 20. Proc Natl Acad Sci U S A. 2020. PMID: 32079725 Free PMC article.
-
Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs.Stat Comput. 2020;30(3):627-648. doi: 10.1007/s11222-019-09909-6. Epub 2019 Nov 5. Stat Comput. 2020. PMID: 32132771 Free PMC article.
-
On the use of kernel approximate Bayesian computation to infer population history.Genes Genet Syst. 2015;90(3):153-62. doi: 10.1266/ggs.90.153. Genes Genet Syst. 2015. PMID: 26510570 Review.
-
Free will in Bayesian and inverse Bayesian inference-driven endo-consciousness.Prog Biophys Mol Biol. 2017 Dec;131:312-324. doi: 10.1016/j.pbiomolbio.2017.06.018. Epub 2017 Jun 27. Prog Biophys Mol Biol. 2017. PMID: 28663080 Review.
Cited by
-
Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference.PLoS Comput Biol. 2024 Feb 26;20(2):e1011108. doi: 10.1371/journal.pcbi.1011108. eCollection 2024 Feb. PLoS Comput Biol. 2024. PMID: 38408099 Free PMC article.
-
Multiscale Flow for robust and optimal cosmological analysis.Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2309624121. doi: 10.1073/pnas.2309624121. Epub 2024 Feb 21. Proc Natl Acad Sci U S A. 2024. PMID: 38381782
-
Plant science in the age of simulation intelligence.Front Plant Sci. 2024 Jan 16;14:1299208. doi: 10.3389/fpls.2023.1299208. eCollection 2023. Front Plant Sci. 2024. PMID: 38293629 Free PMC article.
-
Designing optimal behavioral experiments using machine learning.Elife. 2024 Jan 23;13:e86224. doi: 10.7554/eLife.86224. Elife. 2024. PMID: 38261382 Free PMC article.
-
Bottom-up data integration in polymer models of chromatin organization.Biophys J. 2024 Jan 16;123(2):184-194. doi: 10.1016/j.bpj.2023.12.006. Epub 2023 Dec 12. Biophys J. 2024. PMID: 38087781
References
-
- Diggle P. J., Gratton R. J., Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. Ser. B 46, 193–212 (1984).
-
- Rubin D. B., Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12, 1151–1172 (1984).
-
- Mohamed S., Lakshminarayanan B., Learning in implicit generative models. arXiv:1610.03483 (11 October 2016).
-
- Sisson S. A., Fan Y., Beaumont M., Handbook of Approximate Bayesian Computation (Chapman and Hall/CRC, 2018).
Publication types
LinkOut - more resources
Full Text Sources
