Sources and Formation of Nucleation Mode Particles in Remote Tropical Marine Atmospheres Over the South China Sea and the Northwest Pacific Ocean

Sci Total Environ. 2020 Sep 15;735:139302. doi: 10.1016/j.scitotenv.2020.139302. Epub 2020 May 11.


A fast mobility particle sizer operating at a one-second time resolution was used to measure aerosol particle number size distribution (5.6-560 nm) in marine conditions over the South China Sea (SCS) from 29 March to 2 May 2017 and in the tropic zone of the Northwest Pacific Ocean (NWPO) from 10 to 29 October 2018. The clean background number concentration of nucleation mode atmospheric particles (<30 nm) was approximately 0.6 × 103 cm-3 in these areas. Two nighttime and five daytime strong new particle formation (NPF) events were observed to occur extending over a spatial scale from 2 to 140 km in the SCS, with a net increase of nucleation mode particles of 4.5 × 104 cm-3 ± 3.4 × 104 cm-3 during five of the seven events. Nighttime NPF events were unlikely associated with sulfuric acid vapor because of lack of photochemical reactions. Daytime NPF events share several common features with nighttime NPF events, e.g., dramatic spatiotemporal variations in the number concentration of the nucleation mode particles. Without aerosol precursor measurements we cannot address the vapors driving the formation process. However, our results show no banana-shaped growth of the particles. The growth into larger particle sizes seems to be restricted by the availability of condensable components in the gas phase. The nucleation mode was observed and sometimes even dominated the number concentration over other particle modes in the marine atmosphere over the tropic zone of the NWPO. In addition, more data obtained during the two campaigns and other campaigns were also applied to strengthen the analysis in terms of origins, formation and absent growth of nucleation mode particles in the marine atmospheres over the two tropic zones.

Keywords: Dramatic; NWPO; New particle formation; SCS; Tropical marine atmosphere.