Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 13;17(4):046011.
doi: 10.1088/1741-2552/ab9842.

Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network

Affiliations

Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network

Stefano Tortora et al. J Neural Eng. .

Abstract

Objective: Mobile Brain/Body Imaging (MoBI) frameworks allowed the research community to find evidence of cortical involvement at walking initiation and during locomotion. However, the decoding of gait patterns from brain signals remains an open challenge. The aim of this work is to propose and validate a deep learning model to decode gait phases from Electroenchephalography (EEG).

Approach: A Long-Short Term Memory (LSTM) deep neural network has been trained to deal with time-dependent information within brain signals during locomotion. The EEG signals have been preprocessed by means of Artifacts Subspace Reconstruction (ASR) and Reliable Independent Component Analysis (RELICA) to ensure that classification performance was not affected by movement-related artifacts.

Main results: The network was evaluated on the dataset of 11 healthy subjects walking on a treadmill. The proposed decoding approach shows a robust reconstruction (AUC > 90%) of gait patterns (i.e. swing and stance states) of both legs together, or of each leg independently.

Significance: Our results support for the first time the use of a memory-based deep learning classifier to decode walking activity from non-invasive brain recordings. We suggest that this classifier, exploited in real time, can be a more effective input for devices restoring locomotion in impaired people.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources