Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper

Funct Plant Biol. 2012 Feb;39(1):82-90. doi: 10.1071/FP11173.

Abstract

To characterise the effect of bacterial inoculants (Azospirillum brasilense and Pantoea dispersa) on the response of sweet pepper (Capsicum annuum L.) to saline stress, plants were exposed to 0, 40, 80 and 120mM NaCl in solution. The effect on plant growth; leaf gas exchange; NO3-, Cl-, K+ and Na+ accumulation; and chlorophyll fluorescence and content were investigated. Total plant DW was reduced significantly by salinity but when inoculants were applied, DW was increased. Inoculated plants showed higher DW accumulation in the roots. Salinity levels up to 80mM NaCl did not affect the net assimilation rate in inoculated plants but 40mM NaCl was enough to reduce this parameter in non-inoculated plants. The leaf area ratio was not modified substantially by inoculation. The leaf Cl- concentration of inoculated plants was reduced at the highest salinity, compared with control plants, and NO3- concentration increased markedly. A higher K+:Na+ ratio was found in inoculated plants. Leaf photosynthesis and stomatal conductance were impaired significantly at moderate, but not low, salinity, the effect of inoculation being enough to maintain higher stomatal conductance under higher stress. The photochemical efficiency of PSII and the relative chlorophyll content were not affected by the inoculants. Thus, the effects of the inoculants on the response to salinity were due mainly to stomatal regulation of photosynthesis rather than effects on biochemical limitations on photosynthesis. These results indicate the benefits of these bacterial inoculants in ameliorating the deleterious effect of NaCl in a salt-sensitive crop like sweet pepper.