Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 May;39(4):297-305.
doi: 10.1071/FP11206.

Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees

Affiliations

Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees

Wilhelm Ehrenberger et al. Funct Plant Biol. 2012 May.

Abstract

Tree water relations and their dependence on microclimate and soil moisture were studied over several months in young oaks (Quercus robur L.) subjected in large lysimeter-based open top chambers to environments with a controlled soil water supply. Automated single point dendrometers and the recently developed leaf patch clamp pressure (LPCP) probe were used for monitoring water-related stem radius variations (ΔW) and turgor-dependent leaf patch pressures (Pp). Both parameters showed distinct diurnal patterns with sharp negative and positive peaking of ΔW and Pp, respectively, after solar noon and recovery to initial levels in the evening. During the day, varying solar radiation was responsible for short time fluctuations of Pp in the range of minutes to hours reflecting feedback regulation of leaf turgor by sunlight driven stomatal movements. At longer timescales, i.e. days to months, atmospheric vapour pressure deficit (VPD) and soil water content (SWC) were the main determinants of ΔW and Pp. Daily minimum and maximum values of ΔW and Pp decreased and increased, respectively, with increasing VPD or decreasing SWC and recovery of ΔW and Pp in the evening was impeded by low SWC. In well-watered oaks, daily positive peaking of Pp preceded daily negative peaking of ΔW; these time lags gradually increased with increasing soil drought, suggesting hydraulic uncoupling of stem and leaves.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources