Comparative Gene Analysis Focused on Silica Cell Wall Formation: Identification of Diatom-Specific SET Domain Protein Methyltransferases

Mar Biotechnol (NY). 2020 Aug;22(4):551-563. doi: 10.1007/s10126-020-09976-1. Epub 2020 Jun 3.


Silica cell walls of diatoms have attracted attention as a source of nanostructured functional materials and have immense potential for a variety of applications. Previous studies of silica cell wall formation have identified numerous involved proteins, but most of these proteins are species-specific and are not conserved among diatoms. However, because the basic process of diatom cell wall formation is common to all diatom species, ubiquitous proteins and molecules will reveal the mechanisms of cell wall formation. In this study, we assembled de novo transcriptomes of three diatom species, Nitzschia palea, Achnanthes kuwaitensis, and Pseudoleyanella lunata, and compared protein-coding genes of five genome-sequenced diatom species. These analyses revealed a number of diatom-specific genes that encode putative endoplasmic reticulum-targeting proteins. Significant numbers of these proteins showed homology to silicanin-1, which is a conserved diatom protein that reportedly contributes to cell wall formation. These proteins also included a previously unrecognized SET domain protein methyltransferase family that may regulate functions of cell wall formation-related proteins and long-chain polyamines. Proteomic analysis of cell wall-associated proteins in N. palea identified a protein that is also encoded by one of the diatom-specific genes. Expression analysis showed that candidate genes were upregulated in response to silicon, suggesting that these genes play roles in silica cell wall formation. These candidate genes can facilitate further investigations of silica cell wall formation in diatoms.

Keywords: Biomineralization; Diatom; Proteome; Silica; Transcriptome.

Publication types

  • Comparative Study

MeSH terms

  • Cell Wall / genetics
  • Cell Wall / metabolism*
  • Diatoms / genetics*
  • Diatoms / metabolism*
  • PR-SET Domains
  • Protein Methyltransferases / metabolism
  • Silicon Dioxide / chemistry
  • Transcriptome*


  • Silicon Dioxide
  • Protein Methyltransferases