A novel cardiac differentiation method of a large number and uniformly-sized spheroids using microfabricated culture vessels

Regen Ther. 2020 May 26:15:18-26. doi: 10.1016/j.reth.2020.04.008. eCollection 2020 Dec.

Abstract

Cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) have great potential for regenerative medicine and drug discovery. In this study, we developed a novel protocol to more reproducibly and efficiently induce cardiomyocytes. A large quantity of uniformly sized spheroids were generated from hiPSCs using microfabricated vessels and induced into cardiac differentiation. In the middle of the cardiac differentiation process, spheroids were then dissociated into single cells and reaggregated into smaller spheroids using the microfabricated vessels. This reaggregation process raised WNT5A and WNT11 expression levels and improved the quality of cardiomyocyte population compared to that in a control group in which dissociation and reaggregation were not performed.

Keywords: Cardiac differentiation; Human induced pluripotent stem cells; Microfabricated vessels; Reaggregation; Spheroid; WNT signal; human induced pluripotent stem cells (hiPSCs), cardiomyocytes (CMs); human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs).