pH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses

Biomacromolecules. 2020 Jun 16. doi: 10.1021/acs.biomac.0c00518. Online ahead of print.


Lymph nodes are proposed as the intriguing target in cancer immunotherapy, and cellular immunity is vital for vaccines to fight against cancer. However, inefficient delivery of vaccines to lymph nodes and deficient lysosomal escape of antigens result in weak cellular immunity, which restrains the strength of vaccines in inducing antitumor immune responses. Hence, dendritic cell membrane (DCM)/histidine-modified stearic acid-grafted chitosan (HCtSA)/ovalbumin (OVA) micelles, as pH-responsive biomimetic vaccines, were fabricated to target lymph nodes and induce cellular immunity for enhanced antitumor immune responses. DCM/HCtSA/OVA micelles exhibited pH-dependent antigen release behavior, which resulted in efficient escape of antigens from dendritic cell (DC) lysosomes. Besides, DCM/HCtSA/OVA micelles accumulated and reserved in the lymph nodes, which ensured effective uptake by DCs. Importantly, DCM/HCtSA/OVA micelles induced potent T cell immune responses, promoted secretion of antitumor-related cytokines, and notably inhibited tumor growth. Overall, DCM/HCtSA/OVA micelles exhibit great potential in targeted immunotherapy and can provide guidance for the design of vaccines.