Exploring the Promising Potential of High Permeation Vesicle-Mediated Localized Transdermal Delivery of Docetaxel in Breast Cancer To Overcome the Limitations of Systemic Chemotherapy

Mol Pharm. 2020 Jul 6;17(7):2473-2486. doi: 10.1021/acs.molpharmaceut.0c00211. Epub 2020 Jun 16.


The currently available systemic chemotherapy for treating breast cancer often results in serious systemic side effects and compromises patient compliance. The distinct anatomical features of human breasts (e.g., embryological origin of breast skin, highly developed internal lymphatic and venous circulation, and the presence of mammary fat layers) help in preferential accumulation of drugs into breasts after topical application on breast region. This unique feature is termed as localized transdermal delivery which could be utilized for effectively delivering anticancer agents to treat breast cancer and reducing the systemic side effects by limiting their presence in blood. However, the clinical effectiveness of this drug delivery approach is highly limited by barrier properties of skin reducing the permeation of anticancer drugs. In the present work, we have developed high permeation vesicles (HPVs) using phospholipids and synergistic combination of permeation enhancers (SCOPE) to improve the skin permeation of drugs. Docetaxel (DTX) was used as a model drug for hypothesis testing. The optimized SCOPE mixture composed of sodium oleate/sodium lauryl ether sulfate/propylene glycol in 64:16:20% w/w ratio. DTX HPVs were prepared using phospholipid: SCOPE, 8:2% w/w ratio. DTX HPVs exhibited as a uniform deformable vesicles with size range 124.2 ± 7.6 nm, significantly improved skin permeation profile, and sustained drug release until 48 h. Superior vesicle deformability, better vesicle membrane fluidization, and SCOPE mediated enhancement in skin fluidization were the prime factors behind enhancement of DTX permeation. The improved cellular uptake, reduced IC50 values, and higher apoptotic index of DTX HPVs in MCF-7 and MDA-MB-231 cells ensured the therapeutic effectiveness of HPV based therapy. Also, HPVs were found to be predominantly internalized inside cells through clathrin and caveolae-dependent endocytic pathways. Bioimaging analysis in mice confirmed the tumor penetration potential and effective accumulation of HPVs inside tumors after topical application. In vivo studies were carried out in comparison with marketed intravenous DTX injection (Taxotere) to compare the effectiveness of topical chemotherapy. The topical application of DTX HPV gel in tumor bearing mice resulted in nearly 4-fold tumor volume reduction which was equivalent to intravenous Taxotere therapy. Toxicity analysis of DTX HPV gel in comparison with intravenous Taxotere dosing showcased remarkably lower levels of toxicity biomarkers (aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and creatinine), indicating improved safety of topical chemotherapy. Overall results warranted the effectiveness of topical DTX chemotherapy to reduce tumor burden with substantially reduced risk of systemic toxicities in breast cancer.

Keywords: breast cancer; docetaxel; localized transdermal drug delivery; nanocarriers; skin permeation; topical chemotherapy.

MeSH terms

  • Administration, Cutaneous
  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / blood
  • Antineoplastic Agents / pharmacokinetics
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / pathology
  • Cell Survival / drug effects
  • Disease Models, Animal
  • Docetaxel / administration & dosage*
  • Docetaxel / blood
  • Docetaxel / pharmacokinetics
  • Drug Carriers / chemistry*
  • Drug Compounding / methods*
  • Female
  • Humans
  • MCF-7 Cells
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles / chemistry*
  • Particle Size
  • Permeability / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Skin / drug effects
  • Skin / metabolism
  • Swine
  • Tissue Distribution
  • Transplantation, Homologous
  • Treatment Outcome
  • Tumor Burden / drug effects


  • Antineoplastic Agents
  • Drug Carriers
  • Docetaxel