Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices
- PMID: 32500277
- DOI: 10.1007/s00234-020-02465-1
Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices
Abstract
Purpose: While neural networks gain popularity in medical research, attempts to make the decisions of a model explainable are often only made towards the end of the development process once a high predictive accuracy has been achieved.
Methods: In order to assess the advantages of implementing features to increase explainability early in the development process, we trained a neural network to differentiate between MRI slices containing either a vestibular schwannoma, a glioblastoma, or no tumor.
Results: Making the decisions of a network more explainable helped to identify potential bias and choose appropriate training data.
Conclusion: Model explainability should be considered in early stages of training a neural network for medical purposes as it may save time in the long run and will ultimately help physicians integrate the network's predictions into a clinical decision.
Keywords: Artificial intelligence; Deep learning; Explainability; Gliobastoma; Machine learning; Vestibular Schwannoma.
Similar articles
-
An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.Comput Math Methods Med. 2020 Jul 14;2020:6789306. doi: 10.1155/2020/6789306. eCollection 2020. Comput Math Methods Med. 2020. PMID: 32733596 Free PMC article.
-
Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.Eur Radiol. 2019 Jul;29(7):3348-3357. doi: 10.1007/s00330-019-06214-8. Epub 2019 May 15. Eur Radiol. 2019. PMID: 31093705 Free PMC article.
-
Explainability of deep neural networks for MRI analysis of brain tumors.Int J Comput Assist Radiol Surg. 2022 Sep;17(9):1673-1683. doi: 10.1007/s11548-022-02619-x. Epub 2022 Apr 23. Int J Comput Assist Radiol Surg. 2022. PMID: 35460019 Free PMC article.
-
Updates on Deep Learning and Glioma: Use of Convolutional Neural Networks to Image Glioma Heterogeneity.Neuroimaging Clin N Am. 2020 Nov;30(4):493-503. doi: 10.1016/j.nic.2020.07.002. Epub 2020 Sep 18. Neuroimaging Clin N Am. 2020. PMID: 33038999 Review.
-
Deep Learning AI Applications in the Imaging of Glioma.Top Magn Reson Imaging. 2020 Apr;29(2):115-0. doi: 10.1097/RMR.0000000000000237. Top Magn Reson Imaging. 2020. PMID: 32271288 Review.
Cited by
-
Mortality Prediction of Patients with Subarachnoid Hemorrhage Using a Deep Learning Model Based on an Initial Brain CT Scan.Brain Sci. 2023 Dec 22;14(1):10. doi: 10.3390/brainsci14010010. Brain Sci. 2023. PMID: 38248225 Free PMC article.
-
Deep Learning for Medical Image-Based Cancer Diagnosis.Cancers (Basel). 2023 Jul 13;15(14):3608. doi: 10.3390/cancers15143608. Cancers (Basel). 2023. PMID: 37509272 Free PMC article. Review.
-
Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review.Front Med (Lausanne). 2023 May 12;10:1180773. doi: 10.3389/fmed.2023.1180773. eCollection 2023. Front Med (Lausanne). 2023. PMID: 37250654 Free PMC article. Review.
-
Recent Advances in Explainable Artificial Intelligence for Magnetic Resonance Imaging.Diagnostics (Basel). 2023 Apr 27;13(9):1571. doi: 10.3390/diagnostics13091571. Diagnostics (Basel). 2023. PMID: 37174962 Free PMC article. Review.
-
Deep learning referral suggestion and tumour discrimination using explainable artificial intelligence applied to multiparametric MRI.Eur Radiol. 2023 Aug;33(8):5859-5870. doi: 10.1007/s00330-023-09710-0. Epub 2023 May 8. Eur Radiol. 2023. PMID: 37150781
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
