Thick Free-Standing Metallic Inverse Opals Enabled by New Insights into the Fracture of Drying Particle Films

Langmuir. 2020 Jul 7;36(26):7315-7324. doi: 10.1021/acs.langmuir.0c00761. Epub 2020 Jun 19.

Abstract

Metallic inverse opals are porous materials with enhanced mechanical, chemical, thermal, and photonic properties used to improve the performance of many technologies, such as battery electrodes, photonic devices, and heat exchangers. Cracking in the drying opal templates used to fabricate inverse opals, however, is a major hindrance to the use of these materials for practical and fundamental studies. In this work, we conduct desiccation experiments on polystyrene particle opals self-assembled on indium-tin oxide coated substrates to study their fracture mechanisms, which we describe using an energy-conservation fracture model. The model incorporates film yielding, particle order, and interfacial friction to explain several experimental observations, including thickness-dependent crack spacings, cracking stresses, and order-dependent crack behavior. Guided by this model, we are the first to fabricate 120 μm thick free-standing metallic inverse opals, which are 4 times thicker than previously reported non-free-standing metallic inverse opals. Moreover, by controlling cracks, we achieve a crack-free single-crystal domain up to 1.35 mm2, the largest ever reported in metallic inverse opals. This work improves our understanding of fracture mechanics in drying particle films, provides guidelines to reduce crack formation in opal templates, and enables the fabrication of free-standing large-area single-crystal inverse opals.